
Practical Computing with Geometric Algebra
Converting Basic Geometric Algebra Relations to Computations on

Multivector Coordinates

Ahmad Hosny Eid,
Assistant Professor,

Computer Engineering Division,
Faculty of Engineering,

Port-Said University, Egypt

July 2016

Abstract

Geometric Algebra (GA) is a fascinating mathematical language for unifying many tools engineers and
scientists use on daily basis. GA can also be used for algebraic manipulation of Euclidean and non-Euclidean
geometries in a consistent manner. Many sources can be found to explain GA and its properties, but few relate
GA to computing for practical software engineering. This article provides a summary, without proofs, of the
fundamental algebraic concepts and operations of GA (sections 1 to 6). After this, the article contains an
explanation of how to transform high-level mathematical GA products and algebraic operations into equivalent
lower-level computations on multivector coordinates (sections 7 and 8). The aim is to provide a computational
basis for implementing compilers that can automatically perform such conversion for the purpose of efficient
software implementations of GA-based models and algorithms.

1 The Outer Product: Constructing Blades
Creating a geometric algebra requires a base real vector space with an associated symmetric bilinear form that
defines a metric on the space. Additional mathematical structure comes from the outer product operation that
extends vectors into blades. Blades algebraically correspond to subspaces in the base vector space. In what follows
the additional structure that distinguishes GA from classical linear algebra is summarized; mostly based on [1] and
[2]. For more information about vector spaces and classical linear algebra the reader can refer to [3] and [4].

1.1 Subspaces of Real Vector Spaces
A subspace W of a vector space V (denoted by W ≤ V) is a subset of the vector space that is closed under vector
addition and vector multiplication with scalars; thus any subspace must contain the zero vector. The set intersection
of two subspaces is always a subspace. The set union of two subspaces is not guaranteed to be a subspace. A similar
operation to set union that guarantees a subspace result is called the sum of subspaces defined as:

W + U = {x :: x = w + u; w ∈W,u ∈ V }, W, V ≤ V

Having a set of mutually disjoint subspaces W1,W2, · · · ,Wk ≤ V (i.e. Wi ∩Wj = {0} ∀i, j = 1, 2, · · · k, i 6= j)
the subspace sum of Wi is called the direct sum of the disjoint subspaces and is denoted by W1 ⊕W2 ⊕ · · · ⊕Wk.
The dimension of the direct sum of disjoint subspaces is equal to the numerical sum of their respective dimensions.
Another important concept is the orthogonal complement of a metric subspace W ≤ V defined by W⊥ = {x :∈ V :
y ⊥ x∀y ∈W}. The orthogonal complement of a subspace W ≤ V has the following properties:

V = W ⊕W⊥

x ⊥ y ∀x ∈W, y ∈W⊥

(W⊥)⊥ = W

1

1.2 Direct Representation of Subspaces
Having a n-dimensional real vector space Rn with an ordered set of basis vectors 〈e1, e2, · · · , en〉, the focus is on
all subspaces of Rn of all dimensions k where 0 ≤ k ≤ n. The geometric meaning of any such subspace is a
k-dimensional flat (the origin, a line, a plane, etc.) in Rn that contains the origin. The outer product of an ordered
set of k Linearly Independent (LID) vectors 〈a1, a2, · · · , ak〉 is used to define algebraic objects, called k-blades in
GA, that can be used to represent such subspaces algebraically with four main characteristics for each subspace:

1. The dimensionality of a subspace k.

2. The attitude of the subspace: this is equivalent to the traditional span in classical linear algebra of the set of
vectors {a1, a2, · · · , ak}.

3. The orientation of the subspace: which is a sign (+1 or -1) associated with the subspace to define the relative
orientation or handedness of the basis set.

4. The weight of the subspace: which is a real number associated with the attitude (and it also includes the sign
i.e. the orientation\handedness of the subspace).

The simplest subspace is the 0-dimensional subspace spanned by no vectors (i.e. it only contains the zero vector)
with a corresponding 0-blade that is simply a scalar λ ∈ R; this subspace will be denoted by Bn0 = R. Any vector
x ∈ Rn is a 1-blade by definition and it corresponds to a 1-dimensional subspace spanned by that vector alone; the
space of 1-blades will be denoted by by Bn1 = Rn. The set of k-blades for any value of k ∈ {0, 1, · · · , n} is denoted
by Bnk and the set of all blades is denoted by Bn =

⋃n
i=0B

n
i .

The outer product is an associative bilinear product used to construct higher-grade blades from lower-grade
ones ∧ : Bnr ×Bns → Bnr+s , r, s, r+ s ∈ {0, 1, · · · , n}. The basic properties of the outer product of scalars (0-blades)
and vectors (1-blades) and general k-blades are as follows:

α ∧ β = αβ (1)
α ∧ x = x ∧ α = αx (2)

x ∧ y = −y ∧ x (3)
X ∧ (Y + Z) = X ∧ Y +X ∧ Z (4)
A ∧ (B ∧ C) = (A ∧B) ∧ C (5)
A ∧ (αB) = α(A ∧B) (6)

α, β ∈ Bn0 ;

x, y, z ∈ Bn1 ;

X,Y, Z, (Y + Z) ∈ Bnk ;

A,B,C ∈ Bn

The anti-symmetry property (3) of the outer product with respect to vectors leads to the important relation:

x ∧ x = −x ∧ x = 0 (7)

In addition, (3) is a special case of a more general property:

X ∧ Y = (−1)rsY ∧X, X ∈ Bnr , Y ∈ Bns

Having a k-dimensional subspace
←→
A spanned by a set of LID vectors 〈a1, a2, · · · , ak〉, the k-blade A = a1 ∧ a2 ∧

· · · ∧ ak can be used to determine if a vector x belongs to the subspace
←→
A based on x being a linear combination of

the spanning vectors of
←→
A ; hence x ∈

←→
A ⇔ x ∧A = 0. In this case the k-blade A is called a direct representation

of the subspace
←→
A (denoted by A ∝

←→
A). It is obvious that A ∝

←→
A ⇒ λA ∝

←→
A ∀λ ∈ Bn0 . The same concept

can be generalized to arbitrary subspaces by stating that a subspace
←→
B = span{b1, b2, · · · , br} is contained in

←→
A

(i.e.
←→
B ≤

←→
A) if each spanning vector in

←→
B satisfies bi ∧ A = 0, i = 1, · · · , r. This is not at all equivalent to

b1 ∧ b2 ∧ · · · ∧ br ∧ A = 0 because this last relation holds if any spanning vector bi is contained in
←→
A . As soon

2

as, say, a 2-blade A = λa ∧ b is constructed from two LID vectors a, b and a scalar λ , all algebraic information
regarding the exact values of the two vectors and scalar in the constructed 2-blade are lost. This is apparent from
the fact that the two vectors can always be expressed as a linear combination of two arbitrary LID vectors x, y in
the same 2-dimensional subspace as a, b and this means that the exact same 2-blade can be constructed using an
infinite number of outer products of two vectors:

a = a1x+ a2y

b = b1x+ b2y

A = λa ∧ b
= λ(a1x+ a2y) ∧ (b1x+ b2y)

= γx ∧ y , γ = λ(a1b2 − a2b1)

This directly means that a 2-blade has no specific shape but rather can be understood as a unit of area freely
floating around like the case of free vectors in traditional vector algebra. For any k-blade a1 ∧ a2 ∧ · · · ∧ ak the
number k representing the dimensionality of the represented subspace is called the grade (or step) of the k-blade.
The grade operator is thus defined as grade(a1 ∧ a2 ∧ · · · ∧ ak) = k. The grade of the outer product of two blades
A,B is the sum of their respective grades: grade(A ∧ B) = grade(A) + grade(B). A blade of grade n is called a
pseudo-scalar of the GA because it contains all vectors and blades of the GA. The unit pseudo-scalar is the n-blade
I = e1 ∧ e2 ∧ · · · ∧ en. Another useful operator in this context is the odd operator defined as:

odd(A) =

{
1 grade(A) is odd

2 grade(A) is even

∀A ∈ Bn

The concept of a k-blade enables the comparison of subspaces of the same attitude (subspaces of the same span).
If any two k-blades of the same grade A,B can be written such that A = λB, λ ∈ R then the real number λ = A/B
holds the relative weight and orientation of the two blades. To compare two blades of different attitude a metric is
needed to enable the operation of rotating one blade to the other as described in section 2.

1.3 The Algebra of k-vectors and the Graded Algebra of Multivectors
k-blades are formed by the outer product of k LID 1-blades (vectors). The resulting structure is a linear combination

of new elements called basis k-blades 〈E1, E2, · · · , Er〉where r =

(
n
k

)
. A basis k-blade Ei can be obtained by

an outer product of k different basis vectors ej1 ∧ ej2 ∧ · · · ∧ ejk , j1 < j2 < · · · < jk. Algebraically, not every
linear combination of the basis k-blades results in a k-blade. Hence the vector space spanned by the basis k-blades
contains all k-blades in addition to other non blade elements called k-vectors. The algebraic vector space spanned
by the basis k-blades is called the k-vector space

∧n
k . k-blades are only just a part of the k-vector space Bnk ⊆

∧n
k

and hence every k-blade is a k-vector but not every k-vector is a k-blade. The only values of k where all k-vectors
are k-blades are k = 0, 1, n− 1, n (i.e. Bnk =

∧n
k for these values of k). That means that in general not every linear

combination of basis k-blades has a geometric meaning of a weighted oriented subspace of Rn but it is algebraically
useful to define addition between arbitrary k-blades of the same grade to form k-vectors. The outer product of any
vector by itself is the zero scalar. The zero scalar is taken to be equivalent to all the zeros of all k-vector spaces
where 0 ≤ k ≤ n that is because the scalar zero can be geometrically interpreted as the empty subspace of any
dimensionality. The k-vector space is simply a span of the basis k-blades hence any linear operation on k-blades
can be easily extended to k-vectors including the bilinear outer product.

Allowing linear combinations of basis k-blades of the same grade produces the space of k-vectors. Now if linear
combinations of basis blades of different grades are allowed, the graded space of multivectors is obtained, which is
a vector space (a linear space) having 2n basis blades with grades ranging from 0 to n. This space is called the
Grassmann space of multivectors and denoted by

∧n. It is convenient to define the grade extraction operator acting
on multivectors 〈〉k :

∧n → ∧n
k that extracts the k-vector part of a multivector. Since the outer product is bilinear

it can be generalized to arbitrary multivectors A,B ∈
∧n as :

3

A ∧B =

n∑
r=0

n∑
s=0

〈A〉 r ∧ 〈B〉 s

⇒ 〈A〉 r ∧ 〈B〉 s = 〈A ∧B〉 r+s , r + s ≤ n

In addition, the zero scalar is equivalent to the zero multivector and all zero k-vectors in both addition operation
and outer product:

A+ 0 = A, A ∧ 0 = 0, A ∈
n∧

Any general multivector thus contains a mixture of different grade elements. If the multivector only contains
k-vectors of even grade it is called an even multivector. If it only contains k-vectors of odd grades it is called an
odd multivector. The odd operator on blades can be generalized to multivectors as:

odd(A) =

1 A is odd

2 A is even

undefined otherwise

∀A ∈
n∧

1.4 The Reversion and Grade Involution
Two useful operations can be defined on blades. The first is the reversion defined on a k-blade A = a1∧a2∧· · ·∧ak
as:

Ã = ak ∧ ak−1 ∧ · · · ∧ a1 = (−1)k(k−1)/2A, A ∈ Bnk
This sign change exhibits a + + − − + + −− pattern with periodicity 4. The reversion can be generalized to

k-vectors as:

Ã = (−1)k(k−1)/2A, A ∈
n∧
k

⇒ Ã =

n∑
r=0

(−1)r(r−1)/2 〈A〉 r, A ∈
n∧

.For any two multivectors A,B the reversion has the following properties that result in it being called an “anti-
involution” because its result when applied twice is the same multivector (an involution) and when applied to the
outer product it reverses the order of the arguments:

(A∼)∼ = A

(A ∧B)∼ = B∼ ∧A∼

The second operation is the grade involution defined by:

Â = (−1)odd(A)A, A ∈
n∧
k

Â =

n∑
r=0

(−1)r 〈A〉 r, A ∈
n∧

This sign change exhibits a +−+−+−+− pattern with periodicity 2. The grade involution has the following
properties for any two multivectors A,B:

4

(A∧)∧ = A

(A ∧B)∧ = A∧ ∧B∧

Using the two operations a third one called the Clifford conjugate can be defined, which is also an anti-involution
as:

A = (Ã)∧

= (−1)k(k+1)/2A, A ∈
n∧
k

A =

n∑
r=0

(−1)r(r+1)/2 〈A〉 r, A ∈
n∧

This sign change exhibits a +−−++−−+ pattern with periodicity 4. The Clifford conjugate has the following
properties for any two multivectors A,B:

A = A

(A ∧B) = B ∧A

2 Metric Products of Sub-spaces: Comparing Blades

2.1 Symmetric bilinear Forms and Quadratic Forms: The Inner Product
A metric space is just a vector space with a way to compute the norm of an arbitrary vector. This essentially
associates each vector in the space with some scalar. If two vectors are associated with the same scalar they are
of equal norm. In this context the norm is any general number; even zero and negative numbers are allowed for
non-zero vectors. This is one big generalization different from metrics in classical linear algebra that are usually
positive definite. The objective here is to enable comparing vectors and subspaces of different attitude in space
using numbers.

In GA the definition of a metric is based on the concept of a symmetric bilinear form and the associated concept
of a quadratic form. A symmetric bilinear form B on the real vector space Rn is a mapping B : Rn × Rn → R
that is linear in both arguments (i.e. bilinear) and symmetric B(u, v) = B(v, u) ∀u, v ∈ Rn. The bilinear form
essentially associates any pair of vectors (regardless of their order) with a real scalar. If the vector space has the
basis 〈e1, e2, · · · , en〉 then the so called bilinear form matrix AB = [aij] , aij = B(ei, ej) can be constructed. This
matrix is naturally a real symmetric matrix that can be used to compute the bilinear form of any two vectors given
their representation on the basis as follows:

u = u1e1 + · · ·+ unen,

v = v1e1 + · · ·+ vnen

⇒ B(u, v) =
(
u1 · · · un

)
AB

(
v1 · · · vn

)T
Using bilinear forms the concept of orthogonality of vectors can be defined as follows: two vectors u, v are called

orthogonal if and only if B(u, v) = 0. The inner product of two vectors is simply the bilinear form of the vectors
(u ·v = B(u, v)) and the metric is the inner product of a vector with itself thus justifying the use of the name “inner
product matrix” for the bilinear form matrix.

A related concept is the quadratic form that is related to a symmetric bilinear form by: Q(u) = 1
2B(u, u), B(u, v) =

Q(u + v) −Q(u) −Q(v) ∀u, v ∈ Rn. The quadratic form satisfies the relation Q(λu) = λ2Q(u) ∀u ∈ Rn, λ ∈ R.
This means that the metric (the squared length of a vector in the special case of Euclidean vector spaces) is simply
twice the value of the quadratic form. The value of the quadratic form can be computed from the associated bilinear
form matrix as follows:

5

u = u1e1 + · · ·+ unen

⇒ Q(u) =
1

2

(
u1 · · · un

)
AB

(
u1 · · · un

)T
The inner product matrix is a real symmetric matrix. Any real symmetric matrix A can be diagonalized by an

orthogonal matrix to obtain a diagonal matrix D = PTAP where P is an orthogonal matrix (i.e. P−1 = PT). The
orthogonal matrix P used in the diagonalization process is actually a “change of basis” matrix that also happens to
be orthogonal. The columns of P are actually the eigen vectors of A. The diagonalization can always be performed
such that the numbers on the diagonal (called the eigen values) are either -1, 0, or +1. The number of eigen values
that are -1, 0, and 1 are characteristics for a given inner product matrix and define what is called the signature
of the bilinear\quadratic form. A bilinear\quadratic form is said to have the signature (p, q, r) if there exists a
diagonalization of the inner product matrix having p eigen values with positive value, q eigen values with negative
value and r eigen values with zero values. If the inner product matrix is singular (i.e. has no inverse) the bilinear
form is called degenerate. If all the eigen values are positive the inner product matrix is positive definite and
the space is a Euclidean space (there exists a basis with all basis vectors norms equal to +1). A mixed-signature
metric space has non-zero vectors with norm equal to zero. Such vectors are called null vectors and only exist in
mixed-signature spaces (spaces having a bilinear form with both +1 and -1 signatures).

2.2 The Scalar Product of Blades: Comparing Same-Grade Blades
In a Euclidean space useful geometric operations on vectors can be defined using the inner product. For example
the squared length of a vector ‖x‖2 = x · x and the angle between two vectors cos(θ) = u · v� (‖u‖ ‖v‖). Similar
geometric operations can be defined for higher grade blades using the scalar product of two k-blades of the same
grade k. For example the scalar product of 2-blades can be used to define their areas, volumes for 3-blades, etc.
The scalar product is defined follows:

∗ : Bnk ×Bnk → Bn0

α ∗ β = αβ,

where α, β ∈ Bn0

X ∗ Y = (−1)k(k−1)/2

∣∣∣∣∣∣∣∣∣
B(x1, y1) B(x1, y2) · · · B(x1, yk)
B(x2, y1) B(x2, y2) · · · B(x2, yk)

...
...

. . .
...

B(xk, y1) B(xk, y2) · · · B(xk, yk)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
x1 · yk x1 · yk−1 · · · x1 · y1
x2 · yk x2 · yk−1 · · · x2 · y1

...
...

. . .
...

xk · yk xk · yk−1 · · · xk · y1

∣∣∣∣∣∣∣∣∣
where X = x1 ∧ x2 ∧ · · · ∧ xk,

Y = y1 ∧ y2 ∧ · · · ∧ yk
X ∗ Y = 0 otherwise

From the symmetry of the definition the following properties of the scalar product can be deduced:

A ∗B = B ∗A
= Ã ∗ B̃

Using the scalar product the squared norm of a k-blade A as: ‖A‖2 = A∗ Ã can be defined. The angle θ between
two k-blades A,B of the same grade k can be defined as:

cos(θ) =
A ∗ B̃
‖A‖ ‖B‖

6

Reinterpreting a zero cosine within this larger context, it either means that two blades are geometrically per-
pendicular in the usual sense (i.e. it takes a right turn to align them); or that they are algebraically orthogonal in
the sense of being independent, (i.e., not having enough in common thus there is no single rotation with any angle
that can make them identical).

2.3 The Contraction Product of Blades: Comparing General Blades
The scalar product has a non-zero value only for blades of the same grade (i,e. it relates subspaces of the same
dimension). To compare subspaces of different dimension another method is required that should be universally
applicable to all blades and linear in the same time. The left contraction of blades (denoted by AcB and pronounced
as A contracted on B) is one such method where c : Bnr × Bns → Bns−r , r, s, s − r ∈ {0, 1, · · · , n}. Having
A ∝

←→
A , B ∝

←→
B , A ∈ BnrB ∈ Bns the geometric meaning of AcB is a (s-r)-blade C ∝

←→
B ∩ (

←→
A)⊥. If the subspace

←→
B ∩ (

←→
A)⊥has a dimension other than s − r the result of AcB is considered zero to make the left contraction a

linear product. The explicit definition of the left contraction is as follows:

αcβ = αβ

αcA = αA

AcB = 0, grade(A) > grade(B)

acb = B(a, b) = a · b
ac(B ∧ C) = (acB) ∧ C + (−1)grade(B)B ∧ (acC)

(A ∧B)cC = Ac(BcC)

α, β ∈ Bn0 ,

A,B,C ∈ Bn

The left contraction is bilinear and distributive over addition (but not associative) thus can be directly extended
to k-vectors and thus to multivectors as:

AcB =

n∑
r=0

n∑
s=0

〈A〉 rc 〈B〉 s

⇒ 〈A〉 rc 〈B〉 s = 〈AcB〉 s−r , s ≥ r

The non-associativity of the left contraction product is apparent from comparing the grade of (AcB)cC and
Ac(BcC) that are generally not equal. In addition the relation

(A ∧B)cC = Ac(BcC) (8)

is valid for any three blades A,B,C whereas the following relation of the three blades is only valid in a certain
condition:

(AcB)cC = A ∧ (BcC), A ≤ C (9)

Equations (8) and (9) are called the duality formulas.
One useful property of the contraction is given by:

xc(a1 ∧ a2 ∧ · · · ∧ ak) =

k∑
i=1

a1 ∧ a2 ∧ · · · ∧ (xcai) ∧ · · · ∧ ak

⇒ xc(a ∧ b) = (x · a)b− (x · b)a

Geometrically when A,B are blades, AcB is another blade contained in B and perpendicular to A with a norm
proportional to the norms of A,B, and the projection of A on B. In addition the following relation between a vector
and a blade is important:

xcA = 0⇔ x ⊥ y, ∀y : y ∧A = 0

7

(i,e. xcA = 0 if and only if x is perpendicular to all vectors contained in A). In addition, the left contraction of
same grade blades is identical to the scalar product of the blades:

AcB = A ∗B, ∀A,B ∈ Bnk
A reversed version of the left contraction can be defined that is called the right contraction product (denoted

by BbA and pronounced as B contracted by A) where b: Bnr × Bns → Bnr−s , r, s, r − s ∈ {0, 1, · · · , n}. The right
contraction is related to the left contraction by:

BbA = (ÃcB̃)∼ = (−1)a(b+1)AcB, a = odd(A), b = odd(b)

The duality formulas (8) and (9) can be written for the right contraction as:

Cb(B ∧A) = (CbB)bA, ∀A,B,C ∈ Bn

Cb(BbA) = (CbB) ∧A ∀A,B,C ∈ Bn, A ≤ C

2.4 Orthogonality and Duality of Blades
Any blade A ∈ Bnk with non-zero norm ‖A‖2 6= 0 (i.e. a non-null blade) can have an inverse blade A−1 with respect
to the left contraction product (i.e. AcA−1 = 1) defined as:

A−1 =
Ã

‖A‖2
=

(−1)k(k−1)/2

A ∗ Ã
A, k = grade(A)

This inverse is not unique with respect to the left contraction but is always present for blades like A. A special
case is the inverse of a non-null vector given by a−1 =

a

‖a‖2
. Hence for any blade with unit norm like the pseudo-

scalar of a Euclidean space the inverse of the blade is its reverse I−1 = I∼, ‖I‖ = 1. For a general space with
signature (p, q, 0) the inverse of the pseudo-scalar is given by I−1 = (−1)qI∼. Using the inverse of a blade a very
important operation on blades can be defined that is called the dual of a blade A ∈ Bnr with respect to a larger
blade X ∈ Bns , s ≥ r that is a mapping ∗ : Bnr ×Bns → Bns−r that acts as follows:

A∗X = AcX−1, ∀A ≤ X

When the larger blade is the space pseudo-scalar I the dual is simply written as A∗ = AcI−1. The geometric
meaning of the dual A∗ is simply a blade orthogonal to the original blade A such that they together complete the
space; i.e. if A is the direct representation of the subspace

←→
A then A∗ is the direct representation of (

←→
A)⊥:

A ∝
←→
A ⇔ A∗ ∝ (

←→
A)⊥

Taking the dual for a blades two times results in the same blade with a weight change:

(A∗X)∗X = (AcX−1)cX−1

= A ∧ (X−1cX−1)

= A ∧ (
(−1)s(s−1)/2

‖X‖2
XcX−1)

=
(−1)s(s−1)/2

‖X‖2
A

∀A ∈ Bnr , X ∈ Bns , A ≤ X

Another related operation in a blade A ≤ X called the undualization of the blade A with respect to the blade
X can be defined as follows:

A�X = AcX, ∀A ≤ X

Applying the undualization after the dualization (and similarly applying the dualization after the undualization)
results in the original blade with no weight change: (A∗X)�X = AcX−1)cX = A∧(X−1cX) = A. Using the duality

8

formulas a duality relation can be found between the contraction products and the outer product for any two blades
A,B:

(A ∧B)∗X = AcB∗X

(AcB)∗X = A ∧B∗X

∀A,B ≤ X

The above relations enable the use of another representation of subspaces called the dual representation of a
subspace. Having a blade that is a direct representation of a subspace A ∝

←→
A then x ∈

←→
A ⇔ x ∧ A = 0.

Now if the dual of A is defined the same relation between the vector x and the subspace
←→
A as can be expressed:

x ∈
←→
A ⇔ xcA∗ = 0. The blade A∗ is thus called the dual representation of

←→
A . This gives more flexibility in the

choice of a representation blades for a given subspace. Using the dual of a blade a generalized linear projection
operation of a general blade X onto a general blade with larger grade B can be defined as:

PB [X] = (XcB)∗B

= (XcB)cB−1

= (XcB−1)cB

The familiar geometric projection operation is algebraically non-linear because if projecting, say, a line on a
plane the result is often another line, but may also be a point when they are perpendicular. Note that the exact
weight of B is irrelevant in this definition (rolled out by the inverse of B) and only its attitude is used. Taking the
undualization of both sides leads to XcB = PB [X]cB which leads to defining the contraction geometrically in terms
of the projection and the dualization as: the contraction AcB is a sub-blade of B of grade grade(B) − grade(A)
dual with respect to B to the projection of A on B. The contraction is used as the base for defining the projection
rather than the other way around because the contraction is linear in both arguments whereas the projection is
only linear in the projected blade. Using the outer product and the dual the 3D cross product of vectors a × b
can be generalized to any dimension by noting its geometric meaning and translating it to GA. The cross product
of two vectors is simply the orthogonal complement of the homogeneous plane spanned by the two vectors. Thus
a× b = (a ∧ b)∗ = (a ∧ b)cI−1, ∀a, b ∈ R3. This definition is independent of the dimension of the vector space and
can be used with any two vectors of any GA with non-null pseudo scalar I.

As an application on the concepts in this section, a typical need is to express a vector x ∈ Rn as a linear
combination of general (i.e. not necessarily orthogonal) basis vectors 〈b1, b2, · · · , bn〉. First an association of each
basis vector bi with a reciprocal vector is done, defined as ci = (−1)i−1(b1∧ b2∧ · · ·∧ bi−1∧ bi+1∧ · · ·∧ bn)cI−1, i =
1, 2, · · · , n, I = b1 ∧ b2 ∧ · · · ∧ bn. The basis 〈b1, b2, · · · , bn〉 and 〈c1, c2, · · · , cn〉 are easy to be shown mutually
orthogonal bi · cj = δji , ∀i, j = 1, 2, · · ·n. The geometric meaning of a reciprocal basis vector ci is the orthogonal
complement of the span of all basis vectors except the basis vector bi. Now to determine the coefficients xi such
that x = x1b1 + x2b2 + · · ·xnbn the relation xi = x · ci (i.e. x =

∑n
i=1(x · ci)bi) is simply used. If the vector space is

Euclidean with orthonormal basis then all basis vectors have a norm of ‖bi‖ = 1 hence the reciprocal basis vector
ci is the same as the basis vector bi. Generally, two reciprocal basis vectors are not co-linear bi ∧ ci 6= 0 however
the following relation holds:

∑n
i=1 bi ∧ ci = 0.

3 Linear Transformations of Sub-spaces: Changing Blades

3.1 Linear Transforms of Vector Spaces
In linear algebra a linear operator on a real vector space f : Rn → Rn is a general mapping that acts on vectors to
produce other vectors such that: f [αx] = αf [x], f [x + y] = f [x] + f [y], ∀α ∈ R, x, y ∈ Rn. Classically the concept
of a linear operators is associated with matrices through the following construction: assuming the vector space has
the general basis E = 〈e1, e2, · · · , en〉 any vector x ∈ Rn can be expressed as a linear combination of the vectors
in E as x = x1e1 + · · · + xnen. The representation of the vector x with respect to the basis E is defined as the
1-column matrix [x]E = RepE [x] = (x1 x2 · · · xn)T . Having a linear operator defined f : Rn → Rn such
that the effect of f on the basis vectors of E is known and expressed as linear combination of another general basis
B = 〈b1, b2, · · · , bn〉 (i.e. RepB[f [ei]] is known for all ei), the matrix of f acting on E with respect to B is defined
as:

9

[f]E,B = RepE,B[f] =
[
f1 f2 · · · fn

]
, fi = RepB[f [ei]]

Hence the transformation of any vector can be found through the following simple matrix multiplication relation:

RepB[f [x]] = RepB[x1f [e1] + x2f [e2] + · · ·+ xnf [en]]

= x1RepB[f [e1]] + x2RepB[f [e2]] + · · ·+ xnRepB[f [en]]

= RepE,B[f]RepE [x]

⇒ [f [x]]B = [f]E,B [x]E

When the two basis are the same (E = B) the relation becomes [f]E = RepE [f] =
[
f1 f2 · · · fn

]
, fi =

RepE [f [ei]], [f [x]]E = [f]E [x]E ∀x ∈ Rn. The unique matrix [f]E,B is called the matrix representation of f with
respect to basis E and B. Many properties of the linear transform can then be found by matrix algebra. For
example the linear transform is invertible if and only if the matrix is non-singular. The determinant of the linear
operator is proportional to the determinant of the matrix. Another example is the adjoint linear transform f related
to a linear operator f defined on a real inner product space Rn with bilinear form B is the transform that satisfies
B(f [x], y) = B(x, f [y]) ∀x ∈ Rn. The matrix representation of f is the transpose of the matrix representation of
f :
[
f
]
E

= ([f]E)T . In addition, two matrices are called similar if they represent the same linear operator. An
invertible linear operator f that satisfies B(f [x], f [y]) = B(x, y) ∀x, y ∈ Rn is called an orthogonal operator. An
orthogonal operator f preserves the inner product between vectors (hence it preserves lengths and angles) and its
adjoint is equal to its inverse: f−1 = f . The concept of linear operator on vector spaces can be generalized to linear
transforms where the domain and co-domain spaces are different; perhaps even having different dimensions resulting
in non-square transformation matrices. GA provides a coordinate free alternative for studying and extending linear
operators and transformations without the use of matrices.

3.2 Applying Linear Transforms to Blades: Outermorphisms
The concept of a linear operator can be extended to act on whole subspaces by applying f to the basis vectors of
the subspace and reconstructing the transformed subspace afterwards. An alternative approach is possible using
the algebraic constructions of GA through extending the linear operator to act on arbitrary blades, by constructing
what is called an outermorphism, as follows:

f : Bn → Bn

f [α] = α, ∀α ∈ Bn0
f [A+B] = f [A] + f [B], ∀A,B ∈ Bnk
f [X ∧ Y] = f [X] ∧ f [Y], ∀X,Y ∈ Bn

An extension of a map of “vectors to vectors” in this manner to the whole of the Grassmann algebra is called
extension as a (linear) outermorphism, since the third property shows that a morphism (i.e., a mapping) is obtained
that commutes with the outer product. Outermorphisms have nice algebraic properties that are essential to their
geometrical usage:

• Blades Remain Blades: Geometrically, oriented subspaces are transformed to oriented subspaces of the same
grade: grade(A) = grade(f [A]), ∀A ∈ Bn. This means that the dimensionality of subspaces do not change
under a linear transformation.

• Preservation of Factorization. If two blades A,B have a blade C in common then the blades f [A], f [B] have
f [C] in common. Hence the meet of subspaces is preserved under the linear transform.

The determinant of a linear operator f is a fundamental scalar property of f defined implicitly as: f [I] = det(f)I. It
signifies the change in weight between the pseudo-scalar of the space I and its transformed version under f which
is the original definition of determinants in linear algebra. using this definition it is easy to show properties of
determinants of linear transforms such as det(g ◦ f) = det(g)det(f). This is all done without using matrices and
coordinates as usually applied in linear algebra. Another important concept in linear algebra is the adjoint of a
linear operator f denoted by f . For any linear operator f : Rn → Rn defined on a real vector space Rn having

10

arbitrary (not necessarily orthogonal) basis 〈b1, b2, · · · , bn〉 the adjoint operator is defined using the reciprocal basis
〈c1, c2, · · · , cn〉as:

f : Rn → Rn

f [x] =

n∑
i=1

(x · f [bi])ci, ∀x ∈ Rn

Now the outermorphism of the adjoint can be constructed using the outer product. The adjoint outermorphism
satisfies the following relations for all blades:

f [A] ∗B = A ∗ f [B] ∀A,B ∈ Bn

f = f

f−1 = f
−1

Applying an outermorphisms to the scalar product is simple since it always produces a scalar:

f [A ∗B] = A ∗B

For the left contraction product the relation is:

f [AcB] = f
−1

[A]cf [B]

And in the case that f is an orthogonal operator the relation becomes simpler (i.e. f is also an innermorphism
in addition to being an outermorphism):

f [AcB] = f [A]cf [B]

When transforming a blade X that directly represents a subspace
←→
X using a linear operator f the dual X∗that

dualy represents
←→
X is also transformed under a related operator that shall be called the dual operator of f and

denote it by f∗ that is generally not equal to f . The relation between the two operators must be designed such that
the represented subspace remains the same along with its weight: f∗[X∗] = (f [X])∗∀X ∈ Bn. This restriction is
to ensure the consistency of the represented subspace and directly results in the following relation between the two
linear operators:

f∗[X∗] = det(f)f
−1

[X∗]

This relation is simplified for orthogonal transforms as:

f∗[X∗] = det(f)f [X∗]

= ±f [X∗]

Since f∗[X∗] is not generally equal to f [X∗], it implies that blades that are intended as dual representations
of subspaces do not transform in the same way as blades that are intended as direct representations. In a proper
representation of geometry, therefore a blade usage interpretation is needed before a linear operator is applied. The
last relation enables us to find an expression for the inverse of a linear operator; if it exists:

f−1[A] =
1

det(f)

(
f [A∗]

)�
=

1

det(f)
f [AcI−1]cI

Although this expression uses duality it is not a metric expression because the two dualities cancel each other
hence any metric can be assumed for computing the outermorphism (preferably the Euclidean metric).

11

3.3 Matrix Representation of Outermorphisms
Having a linear transform on a real vector space f : Rn → Rn with general basis B = 〈b1, b2, · · · , bn〉 and reciprocal
basis C = 〈c1, c2, · · · , cn〉, any vector x ∈ Rn has a matrix representation [x]B = RepB[x] = (x1 x2 · · · xn)T

where the components xi can be found using the reciprocal basis as xi = x · ci. In addition, the linear operator
has a matrix representation [f]B = RepB[f] =

[
f1 f2 · · · fn

]
where the components fj = RepB[f [bj]] =(

f1j f2j · · · fnj
)T are column vectors having the following structure:

fij = f [bj] · ci
= (b1 ∧ b2 ∧ · · · ∧ bi−1 ∧ f [bj] ∧ bi+1 ∧ · · · ∧ bn)cI−1

I = b1 ∧ b2 ∧ · · · ∧ bn
∀i, j = 1, 2, · · · , n

The same construction can be generalized to k-vectors by using the k-vector basis bladesBn
k =

〈
bk1 , b

k
2 , · · · , bkr

〉
, r =(

n
k

)
. In this case the reciprocal basis k-vectors are defined as Cn

k =
〈
ck1 , c

k
2 , · · · , ckr

〉
, r =

(
n
k

)
where cki =

(cj1∧cj2∧· · ·∧cjk)∼when bki = bj1∧bj2∧· · ·∧bjk . The matrix of the outermorphism for the k-vectors is constructed as
[f]Bn

k
= RepBn

k
[f] =

[
fk1 fk2 · · · fkr

]
where the components fkj = RepBn

k
[f [bkj]] =

(
fk1j fk2j · · · fknj

)T
are column vectors having the values fkij = f [bkj] ∗ cki . All these (n + 1) matrices can be combined as blocks in a
single 2n × 2n matrix that acts on the representation of any multivector with respect to the 2n basis blades of the
full GA

∧n.
4 Intersection and Union of Sub-spaces: The Meet and Join of Blades

Given two subspaces
←→
A ,
←→
B of the overall vector space Rn, the largest subspace common to both of them is

called the meet of those subspaces, and as a set is the intersection
←→
A ∩

←→
B of those subspaces. The join of

the two given subspaces is the smallest super-space common to both of them, and as a set is the sum
←→
A +

←→
B ={

x1 + x2 : x1 ∈
←→
A , x2 ∈

←→
B
}
of those subspaces.

←→
A +
←→
B is not usually a “direct sum”

←→
A ⊕
←→
B , as the decomposition

x1 + x2 of a nonzero element of the join is uniquely determined only when A ∩ B = 0. The system of subspaces,
with its subset partial ordering and meet and join operations, is an example of the type of algebraic system called
a “lattice”. Blades needs to be defined that directly represent the meet M = A ∩ B and join J = A ∪ B of two
subspaces

←→
A ,
←→
B given their direct representation blades A,B.

The meet M = A ∩B of two blades A,B can be defined as any blade that satisfies:

∀x ∈ Rn : [x ∧M = 0]⇔ [x ∧A = 0, x ∧B = 0]

While the join J = A ∪B can be defined as any blade that satisfies

∀x ∈ Rn : [x ∧ J = 0]⇔ [∃x1∃x2 : x = x1 + x2, x1 ∧A = 0, x2 ∧B = 0]

The two conditions defining the meet and join are restrictions on the attitudes of the blades M,J but not on their
weight. Thus if a bladeM satisfies the meet condition then any blade λM,λ ∈ R will also satisfy the same condition
leading to an infinite number of representing blades with common attitude; and the same can be said for the join.
Geometrically it is advantageous to define the meet of two blades with respect to their join or to define the join
with respect to their meet. This geometric constraint, which is not more than a reasonable convention, leads to any
of the following three equivalent algebraic constraints:

J = (AbM−1) ∧M ∧ (M−1cB)

= A ∧ (M−1cB)

= (AbM−1) ∧B
M = (BcJ−1)cA

= B∗JcA
= Bb(J−1bA)

McJ−1 = (BcJ−1) ∧ (AcJ−1)⇔M∗J = B∗J ∧A∗J

12

These algebraic constraints relate any change in the weight of the meet to the weight of the join (and vice versa)
such that if any of them is multiplied by a scalar λ , the other must be multiplied by 1/λ.

The two given conditions for the meet and join are obviously metric-independent, but notice that the above
constraints use metric GA products. The key is that the actual metric is irrelevant and a Euclidean metric can be
assumed for computations without affecting the final results. In these constraints the blades A,B are assumed to
be factored such that A = Á ∧M and B = M ∧ B́ leading to J = Á ∧M ∧ B́, Á = AbM−1, B́ = M−1cB.

If an invertible outermorphism f is applied to the meet M and join J of two blades A,B determining their
relations to the meet M̄ and join J̄ of the transformed blades Ā = f [A], B̄ = f [B] might be required. using the
definition of meet and join, it is possible to proving that if setting M̄ = f [M], J̄ = f [J] then M̄ and J̄ are “a meet
and a join” for Ā, B̄ for any meet and join (i.e. regardless of the above geometric constraint convention). Now
introducing the geometric constraint on M,J , it is possible to prove that M̄ = f [M], J̄ = f [J] satisfy the same
geometric constraint automatically. The following are 3 options for selecting the weight of the 4 blades J,M, J̄, M̄ :

1. Scaling the meet M by λ the join J is scaled by 1/λ (according to the geometric constraint) thus J̄ will be
scaled by 1/λ (because f [J/λ] = f [J]/λ) and M̄ is scaled by λ.

2. The norm of the join is required to be of a specific value (say α) so f [J] is re-scaled such that the join and
meet of the transformed blades are now defined as J̄ = α

‖f [J]‖ f [J], M̄ = ‖f [J]‖
α f [M].

3. If J is an eigen blade of f (i.e. J and f [J] have the same attitude) then f [J] = λJ hence defining J̄ = J =
f [J]/λ, M̄ = λf [M].

5 The Fundamental Product of Geometric Algebra: The Geometric
Product

5.1 Defining the Geometric Product
Having a fixed and known vector a ∈ Rn, a vector x is to be found given its inner product with a is knows: a ·x = α
The problem here is that an infinite number of vectors satisfy the given relation thus there can be non-unique
inverse for a with respect to the inner product. A similar situation is with the outer product when having the
relation a ∧ x = B where a,B are known. Thus there is no inverse with respect to the outer product either. But
if both relations are true there can be only one vector x that satisfies both equations. This is the main motivation
behind defining a invertible product between vectors called the geometric product as: ax = a · x + a ∧ x that
results in a multivector rather than a scalar or bi-vector alone. The geometric product is bilinear, associative,
and distributive over addition but not commutative nor anti-commutative. To generalize the geometric product to
higher-grade blades, an orthogonal basis is defined for Rn: 〈e1, e2, · · · , en〉 with a symmetric bilinear form B and
on such basis. This leads to eiei = ei · ei + ei ∧ ei = B(ei, ei)∀i and eiej = ei · ej + ei ∧ ej = −ej ∧ ei = −ejei ∀i 6= j.
Using these two relations a table can be constructed to compute all values of eiej for all i, j = 1, 2, · · · , n (that
will always give a weighted basis blades) and using the linearity, distributivity, and associativity of the geometric
product any geometric product of multivectors can be computed easily. With the geometric product any non-null

vector a ∈ Rn has the unique inverse: a−1 =
1

‖a‖2
a (i.e. a vector in the same direction of a but properly scaled to

make a · a−1 = 1).
The geometric product is related to the inner and outer products of blades through the following relations (that

can be extended by linearity to products of vectors with general multivectors):

a ∧B =
1

2
(aB + B̂a)

B ∧ a =
1

2
(Ba+ aB̂)

acB =
1

2
(aB − B̂a)

Bba =
1

2
(Ba− aB̂)

∀a ∈ Bn0 , B ∈ Bn

13

Another alternative to computing the outer product and the metric products is to compute the geometric product
then extract the appropriate grades from the result using the following relations:

A ∧B = 〈AB〉r+s ∀A ∈ B
n
r , B ∈ Bns , r + s ≤ n

AcB = 〈AB〉s−r ∀A ∈ B
n
r , B ∈ Bns , 0 ≤ s− r ≤ n

AbB = 〈AB〉r−s ∀A ∈ B
n
r , B ∈ Bns , 0 ≤ r − s ≤ n

A ∗B = 〈AB〉0 ∀A ∈ B
n
k , B ∈ Bnk

These relations can be generalized to k-vectors and multivectors using linearity and are the basis of implementing
all bilinear products using the geometric product alone. In addition, using the geometric product produces an
alternative definition for the projection of bladeX onto a general blade with larger grade B as: PB [X] = (XcB)B−1.

5.2 Representing Orthogonal Transformations: Computing with Versors
Using the geometric product, a definition for a powerful GA-based representation for orthogonal transformations can
be made. This representation, alternative to real matrices, is called a versor. Geometrically, any orthogonal trans-
formation in Rn is equivalent to a collection of simple reflections on (n-1)-dimensional hyper-planes. Algebraically,
a reflection on a hyper-plane dually represented by a non-null vector a ∈ Rn is defined as:

La[X] = (−1)xaXa−1 ∀X ∈ Bn, x = odd(X)

In this expression the actual weight (norm) of a is irrelevant since it is canceled by the inverse in a−1. If the
vector a is used as a direct representation for a line (a 1D subspace) then the operation performed here is a reflection
in a line rather than a reflection in a hyper-plane as:

Ĺa[X] = aXa−1 ∀X ∈ Bn

Geometrically, a reflection in a line is not a simple reflection because it is actually a composition of (n-1)
reflections on (n-1)-dimensional hyper-planes in Rn. For example a reflection in the line passing through the x-axis
in R3 is actually two reflections: one in the xy-plane followed by one in the xz-plane thus it is actually rotation
around the x-axis by 180 degrees. A rotation in Rn is geometrically an even number of hyper-plane reflections in
Rn. An odd number of such reflection is called an anti-rotation. Thus a set of consecutive simple reflections for the
blade X on k hyper-planes dually represented by vectors v1, v2, · · · , vk can be written as:

V[X] = (−1)kxvk · · · v2v1Xv1v2 · · · vk
= (−1)kxV XV −1

V = v1v2 · · · vk ∈
n∧
, X ∈ Bn, x = odd(X), k = odd(V)

⇒ V[x] = (−1)kV xV −1

= V̂ xV −1 ∀x ∈ Rn

The multivector V = v1v2 · · · vk ∈
∧n is called a versor and is essentially an even or odd multivector created

by the geometric product of the non-null vectors. The bilinear product VV [X] = (−1)kxV XV −1is called a versor
product and is actually an outermorphism created from an orthogonal transform on vectors. This versor product can
be applied to any even or odd multivector X ∈

∧n (thus to any other versor) using the same formula. This means
that not only subspaces can be transformed by versors but also versors (i.e. orthogonal transformations themselves)
can be transformed by versors. In addition, the composition of two orthogonal transformations LV2

◦LV1
represented

by versors V1, V2 is the geometric product of the two versors as can be clearly seen in the case of vectors x ∈ Rn:

LV2
◦ LV1

[x] = LV2
[LV1

[x]]

= V̂2(V̂1xV
−1
1)V −12

= ˆ(V2V̂1)x(V −11 V −12)

= V̂ xV −1, V = V2V1

∀x ∈ Rn

14

This simply means that orthogonal transformations can be concatenated or composed using the geometric prod-
uct of their representing versors as V2V1, and orthogonal transformations can also be nested using the sandwiching
versor product of one representing versor to the other as (−1)v1v2V2V1V

−1
2 . Thus orthogonal transformations are

themselves objects to be transformed by other transformations.
Any even versor represents a rotation which is an orthogonal transformation that has a determinant of 1 (i.e.

it preserves handedness of the pseudo-scalar I). Any odd versor represents an anti-rotation (or a reflection) which
is an orthogonal transformation that has a determinant of −1 (i.e. it changes handedness of the pseudo-scalar I).
This result is independent of the used metric. If an orthogonal transform L is represented by a versor V then the
inverse transform L−1is represented by V −1. In addition, the versor product VV [X] = (−1)kxV XV −1(being both
an outermorphism and an innermorphism) preserves all bilinear products of geometric algebra: the outer, metric,
and geometric products:

VV [αA] = αA

VV [A+B] = VV [A] + VV [B]

VV [A ∧B] = VV [A]∧VV [B]

VV [A ∗B] = VV [A] ∗VV [B] = A ∗B
VV [AcB] = VV [A]cVV [B]

VV [AbB] = VV [A]bVV [B]

VV [AB] = VV [A]VV [B]

∀A,B ∈
n∧
, α ∈

n∧
0

This is a very important result since it really means that any algebraic construction based on the above op-
erations can be transformed directly under an orthogonal transform in a structure-preserving manner. Meaning
that transforming the components and then creating the structure is equivalent to creating the structure and then
applying the orthogonal transform to the whole geometric structure (may it be an oriented subspace or an orthog-
onal transform by itself). A direct consequence of this structure preserving property is that the transform of the
meet\join of two blades is the meet\join of the transformed blades:

VV [A ∩B] = VV [A] ∩VV [B]

VV [A ∪B] = VV [A]∪VV [B]

∀A,B ∈ Bn

5.3 Reflecting and Projecting on Sub-spaces: Blades as Operators

Having a non-null blade that is a direct representation of a subspace A ∝
←→
A , ‖A‖2 6= 0 and its dual that is a dual

representation for the same subspace A∗ = B ∝ (
←→
A)⊥either blades can be used as a reflection operator for any

vector x ∈ Rn to geometrically perform a reflection of x by the subspace
←→
A using one of the following operations:

L←→
A

[x] = (−1)a+1AxA−1

= (−1)bBxB−1

This reflection can be generalized to an outermorphism to act on any k-blade that directly represents another
subspace X ∝

←→
X as:

L←→
A

[X] = (−1)x(a+1)AXA−1

= (−1)xbBXB−1

where a = odd(A), b = odd(B), x = odd(X). If the blade to be transformed is itself a dual representation for a
subspace X∗ = Y ∝ (

←→
X)⊥the relations become:

15

L∗←→
A

[Y] = (−1)(n−1)(y+1)(a+1)AY A−1

= (−1)(y+1)bBY B−1

Where y = odd(Y). The result L∗←→
A

[Y] in this case is itself a dual representation for the reflected blade. Using
these relations the reflection of any direct or dual blade into another direct or dual blade can be computed to obtain
a direct or dual blade with correct orientation, weight, and attitude. If only the attitude is required the simple
relation L←→

A
[X] = AXA−1is sufficient. In the same sense of this type of “sandwiching product” a direct blade

A ∝
←→
A can be used to construct a linear projection operator using the contraction:

P←→
A

[X] = (−1)x(a+1)Ab(XcA−1)

Since any non-null k-blade A is simply an outer product of LID vectors a1 ∧ a2 ∧ · · · ∧ ak, any orthogonalization
technique could be used to find a set of LID orthogonal vectors that create the same blade A = b1∧b2∧· · ·∧bk, bi·bj =
0 ∀i 6= j. The outer product of any set of LID orthogonal vectors is equal to the geometric product of such set of
vectors A = a1 ∧ a2 ∧ · · · ∧ ak = b1 ∧ b2 ∧ · · · ∧ bk = b1b2 · · · bk thus any non-null k-blade can be expressed as a
geometric product of k LID orthogonal vectors; i.e. any non-null blade is actually a versor. This adds to blades more
representative power: a blade can (directly or dually) represent a subspace, a projection operator, a dualization
operator, or an orthogonal transform (namely, a reflection in a subspace represented by the same blade).

6 Rotating Sub-spaces: Computing with Rotors

6.1 A Rotor as the Ratio of Two Unit Vectors: Subsuming Complex Numbers
Any rotation can be geometrically represented by an even number of simple reflections. A rotor R is an even versor
normalized such that RR̃ = 1⇔ R−1 = R̃ this leads to defining a rotation transformation as:

RR[X] = RXR̃ ∀X ∈
n∧

The simplest of rotors is the ratio of two unit vectors:

R = ab−1, a, b ∈ Rn, ‖a‖2 = 1, ‖b‖2 = 1

= a · b+ a ∧ b
= cos(φ/2)− I sin(φ/2)

Where φ/2 is the angle from a to b and I is the unit pseudo-scalar of the a ∧ b plane. The rotor R in this case
can be used to rotate any multivector by an angle φ where 0 ≤ φ ≤ 2π. The quantity Iφ is called the bi-vector
angle and it contains all information relevant to the rotation. An interesting fact relates complex numbers to rotors
in a plane: complex numbers x+ iy are isomorphic to ratios of 2D vectors to a fixed vector in the 2D plane (usually
the unit vector for the real axis). If a vector a = αe1 + βe2 is defined on the Euclidean orthonormal basis 〈e1, e2〉
then the quantity c = ae−11 = α+ β(e2 ∧ e1) = α+ β(e2e1) represents a complex number α+ iβ that geometrically
corresponds to a with the usual complex number multiplication taken as the geometric product. Thus i can be
interpreted geometrically as the unit bi-vector e2e1 and indeed i2 = (e2e1)2 = −1. The sum and product of two
“complex numbers” A = α1 +α2(e2e1), B = β1 +β2(e2e1) are equivalent to the usual complex number addition and
multiplication:

A+B = α1 + α2(e2e1) + β1 + β2(e2e1)

= (α1 + β1) + (α2 + β2)(e2e1)

AB = [α1 + α2(e2e1)][β1 + β2(e2e1)]

= (α1β1 − α2β2) + (α1β2 + α2β1)(e2e1)

This gives a real geometric interpretation for complex numbers and can be used to extend and explain all
complex number based constructions using GA.

16

6.2 Rotors in 3D: Subsuming Unit Quaternions
In R3 there is an algebraic method for representing rotations of vectors called quaternions. A quaternion Q =
q0 + q = q0 + q1i + q2j + q3k is a scalar q0 plus a “vector” q = q1i + q2j + q3k defined on a basis 〈i, j, k〉 having
the defining multiplication rules: i2 = j2 = k2 = ijk = −1. A unit quaternion satisfies q20 + q21 + q22 + q23 = 1. The
“vector” part of a unit quaternion is traditionally interpreted geometrically as a kind of rotation axis expressed in a
3D “imaginary” basis 〈i, j, k〉 with elements that square to −1. As with complex numbers there is an isomorphism
between rotors in

∧3 with Euclidean orthonormal basis 〈e1, e2, e3〉 and unit quaternions defined as:

i = Ie1 = e2e3

j = Ie2 = e3e1

k = Ie3 = e1e2

, I = e1e2e3

Thus the basis i, j, k are not basis vectors but basis bi-vectors for rotations and the component q is actually a
bi-vector representing the rotation plane of the quaternion Q that can now be expressed as:

Q = q0 + Iq

= q0 + I(q1e1 + q2e2 + q3e3)

= q0 + q1e2e3 + q2e3e1 + q3e1e2

In this case the quaternion multiplication of two quaternions Q = q0 + Iq and P = p0 + Ip used to compose
rotations is:

QP = [q0p0 − 〈qp〉0] + I
[
p0q + q0p+ (q ∧ p)I−1

]
Quaternions are thus just special cases of GA rotors in R3.

6.3 The Exponential Representation of Rotors
In a vector space with a Euclidean metric any geometric product of an even number of unit vectors is a rotor. In
other metrics this is not the case unless the rotor R satisfies RR̃ = 1. Even in this case there exists a distinction
between rotors that are "continuously connected to the identity" and those that are not. This property implies
that some rotors can be performed gradually in small amounts (such as rotations), but that in the more general
metrics there are also rotors that are like reflections and generate a discontinuous motion. Only the former are
candidates for the proper orthogonal transformations that is hoped to be represented by proper rotors. There is an
alternative method for constructing proper rotors other than multiplying unit vectors. That method is based on an
exponential of a bi-vector angle Iφ that directly computes the rotor from the bi-vector angle (without the need for
the more basic reflection vectors). Using the traditional power series the exponential of a bi-vector angle Iφ can be
defined where I2 = −1 as:

eIφ = 1 +
1

1!
(Iφ) +

1

2!
(Iφ)2 + · · ·+ 1

n!
(Iφ)n + · · ·

=

[
1− 1

2!
φ2 +

1

4!
φ4 − · · ·

]
+ I

[
1

1!
φ− 1

3!
φ3 +

1

5!
φ5 − · · ·

]
= cos(φ) + I sin(φ)

⇒ RIφ = cos(φ/2)− I sin(φ/2) = e−Iφ/2

This exponential representation is isomorphic to the traditional exponential representation of unit complex
numbers in 2D.

The same Taylor series expansion can be applied to any 2-blade A in a general metric space to create a “pure”
rotor RA (called pure because it is a product of two vectors i.e. a scalar plus a bi-vector with no other even grades
of more than 2). The result of the series can be summarized according to the value of A2 as follows:

17

exp(A) = cos(α) +A
sin(α)

α

= cos(α) + U sin(α), A2 = −α2, α ∈ R
exp(A) = 1 +A, A2 = 0

exp(A) = cosh(α) +A
sinh(α)

α

= cosh(α) + U sinh(α), A2 = α2, α ∈ R

In GA the geometric product of rotors is a rotor but the geometric product of exponentials of 2-blades are not
guaranteed to be an exponential of a bi-vector because generally eAeB 6= eA+B , A,B ∈ Bn2 . This means that not
every rotor can be represented as an exponential of a bi-vector. It is proven however that only in spaces with
Euclidean signatures(n, 0, 0), (0, n, 0) and Minkowski signatures (n, 1, 0), (1, n, 0) any exponential of a bi-vector is a
rotor and any rotor can be expressed as an exponential of a bi-vector. Moreover only in these spaces a bi-vector B
can be written as the sum of commuting (i.e. orthogonal) 2-blades B = B1 + B2 + · · · + Bk, BiBj = BjBi. This
allows the decomposition of the rotor that is the exponential of the bi-vector B into the geometric product of pure
rotors:

RB = eB/2

= e(B1+B2+···+Bk)/2

= eB1/2eB2/2 · · · eBk/2

= RB1RB2 · · ·RBk

Thus any rotor can be decomposed to pure rotors in these spaces.

6.4 Logarithms of Rotors
Using a bi-vector B a rotor R can be created by the exponentiation R = eB/2. The reverse process of finding the
bi-vector B given tho rotor R (that is by definition a kind of logarithm logR) is also possible put not generally easy.
If such logarithm could be found, it can be used to create interpolations of rotations that finds smaller rotations
with step N as: R1/N = exp(log(R)/N). The result R1/N is a rotor that performs the rotation from X to RXR̃ as
N smaller rotations. If the bi-vector B is a 2-blade, its exponential expansion involves standard trigonometric or
hyperbolic functions, and its principal logarithm can be found using the inverse functions atan or atanh. However,
the general rotor is the exponent of a bi-vector, not a 2-blade. Since a bi-vector does not usually square to a scalar,
there are now no simple expansions of the exponential, and many mixed terms result. Often it’s desirable to get
back to the basic trigonometric or hyperbolic functions (to get geometrically significant parameters like bi-vector
angles, translation vectors, and scalings). In this case a factorization of the total expression is needed. That would
effectively split the bi-vector into mutually commuting 2-blades with sensible geometric meaning, and would make
the logarithm extractible in closed form. Unfortunately this factorization is hard to do in general.

7 Frames of Basis Vectors
The second part of this article explains how to express all the GA operations in the first part using simple manip-
ulations of real coordinates of multivectors. This explanation is an extension of the treatments in [1, 5, 6]. This
topic is fundamental for any practical software implementation for GA computations.

7.1 Components of a GA Frame
A GA frame F (F n

1 ,AF) is the container that is used to define all basic computations of a geometric algebra
∧n

in terms of the more basic scalar coordinates often used to write a program on a computer. A frame has can be
completely defined using two components:

1. An ordered set of n basis vectors that determine the dimensionality of the frame’s base vector space: F n
1 =

〈f0, f1, · · · , fn−1〉.

18

2. A symmetric real bilinear form B : F n
1 × F n

1 → R, B (fi, fj) = B (fj , fi) = fi · fj to determine the inner
product of basis vectors usually given by the bilinear form matrix AF = [fi · fj]; also called the Inner Product
Matrix (IPM) of the frame.

From the above two components three other components can be automatically constructed (as will be explained
shortly) to serve important purposes for GA computations within the frame:

1. The ordered set of 2n basis blades of all grades F n = 〈F0, F1, · · · , F2n−1〉. This set is automatically determined
by the set of basis vectors F n

1 as will be explained latter. This component is completely independent of the
metric represented by AF .

2. The geometric product of basis blades GF : F n × F n →
∧n that defines the geometric product of basis

blades as a multivector expressed on the same basis blades GF (Fi, Fj) = FiFj =
∑2n−1
k=0 mkFk, mk ∈ R. This

operation is automatically determined by the set of basis vectors and the bilinear form as will be explained
later.

3. If the bilinear form is not orthogonal (i.e. AF is not diagonal), an orthogonal base frame E (En
1 ,AE) of the

same dimension is needed and an orthogonal change-of-basis matrix C−1 = CT that can be used to express
the basis vectors of F as linear combinations of the basis vectors of E . This component is required for the
computation of the geometric product of basis blades GF .

Using these five components any multivector X can be represented by a list of real coefficients [xi] where X =∑2n−1
k=0 xkFk, xk ∈ R and the geometric product of two multivectors X,Y can be easily computed as:

XY =

2n−1∑
r=0

2n−1∑
s=0

xrysGF (Fr, Fs)

According to the form of the IPM AF a frame F can be of any of the following types listed from more special
to more general:

Frame Type IPM Form Inner Product of Basis Vectors
Euclidean Identity matrix fi · fi = 1, fi · fj = 0∀i 6= j

Orthonormal Diagonal with ±1 entries fi · fi = ±1, fi · fj = 0∀i 6= j
Orthogonal Diagonal fi · fi = di, fi · fj = 0∀i 6= j

Non-orthogonal Symmetric non-diagonal fi · fj = fj · fi = bij

7.2 Representing Basis Blades using Basis Vectors
In order to define the basis blades F n = 〈F0, F1, · · · , F2n−1〉 for a frame of any type, a canonical representation
is defined based on the basis vectors F n

1 = 〈f0, f1, · · · , fn−1〉. First the “subset selection” operator
∏
⊕ (S, i) is

introduced that applies an associative binary operator ⊕ with the identity element I⊕ to a subset of an ordered set
of elements S = 〈s0, s1, · · · , sk−1〉 selected according to the integer index i as follows:

∏
⊕

(S, i) =

I⊕ , i = 0

sm , i = 2m,m ∈ {0, 1, · · · , k − 1}

si1 ⊕ si2 ⊕ · · · ⊕ sir ,
i = 2i1 + 2i2 + · · ·+ 2ir ,

ii < i2 < · · · < ir

This operator basically expresses the integer i as a binary number and selects an ordered subset Si from S such
that the binary representation of the index ik of any element sik in Si has only one bit set to 1 at a position ik that
is present in the binary number corresponding to i . Using this operator, the basis blades are defined using basis
vectors as:

Fk =
∏
∧

(F n
1 , k)

=

1 , k = 0

fm , k = 2m,m ∈ {0, 1, · · · , n− 1}

fi1 ∧ fi2 ∧ · · · ∧ fir ,
k = 2i1 + 2i2 + · · ·+ 2ir ,

ii < i2 < · · · < ir

19

After defining the basis blades, any multivector M =
∑2n−1
i=0 miFi can be represented using a column vector of

real coefficients [M]Fn =
(
m0 m1 · · · m2n−1

)T . This is called the additive representation of a multivector.
The subset selection operator

∏
∧ (F n

1 , k) creates a bijective correspondence between basis blades and n-bit binary
numbers as in the following example on a 5D vector space with basis vectors F 5

1 = 〈f0, f1, f2, f3, f4〉:

(13)10 = (01101)2⇐⇒

24 23 22 21 20

0 1 1 0 1
f4 f3 f2 f1 f0

f3 f2 f0

⇐⇒f0 ∧ f2 ∧ f3 = F13

Thus the index k ∈ {0, 1, · · · , 2n−1} of the basis blade Fk expressed as an n-bit binary number completely defines
the structure of the basis blade Fk . This n-bit binary pattern will be called the ID of the basis blade IDFk

. Thus
any multivector can be stored in computer memory as an array (or perhaps for efficiency reasons as a dictionary
or hash table) of 2n scalars representing the coefficients of the basis blades with respect to the given frame. A pair
of (ID, scalar) is called a term and represents a weighted basis blade thus the multivector is represented as a sum
of terms with different IDs ranging from 0 to 2n − 1. In addition some useful metric-independent properties of a
basis blade Fk can be computed directly from the ID IDFk

like the grade g equal to the number of 1’s in the bit
pattern IDFk

. Consequently the signs associated with the reversal F̃k, grade involution F̂k, and Clifford conjugate
Fk can be computed, which are all completely grade-dependent signs. Another important property is the order of
the basis blade among its k-vector basis blades of the same grade g (called its k-vector index) index(Fk). Thus a
universal lookup table like the following one could be constructed to store all these metric independent information
for any frame of dimension n. Using this table, the useful “inverse index” operator could be defined that retrieves
a basis blade ID from its grade g and index i:

IDn
g (i) = IDFk

⇔ grade(Fk) = g, and index(Fk) = i

The inverse index operator is useful when defining outermorphisms as will be described later. In addition, the
subset selection operator could be used with the inverse index operator to describe the ordered set of basis k-vectors
of the same grade g ∈ {0, 1, · · · , n} as:

F n
g =

〈
Fk0 , Fk1 , · · · , Fkr−1

〉
,

ki = IDn
g (i) ∀i ∈ {0, 1, · · · , r}, r =

(
n
g

)
r Fr IDFr

grade(Fr) index(Fr)

0 1 0000 0 0
1 f0 0001 1 0
2 f1 0010 1 1
3 f0f1 0011 2 0
4 f2 0100 1 2
5 f0f2 0101 2 1
6 f1f2 0110 2 2
7 f0f1f2 0111 3 0
8 f3 1000 1 3
9 f0f3 1001 2 3
10 f1f3 1010 2 4
11 f0f1f3 1011 3 1
12 f2f3 1100 2 5
13 f0f2f3 1101 3 2
14 f1f2f3 1110 3 3
15 f0f1f2f3 1111 4 0

⇐⇒

r Fr IDFr
grade(Fr) index(Fr)

0 1 0000 0 0
1 f0 0001 1 0
2 f1 0010 1 1
4 f2 0100 1 2
8 f3 1000 1 3
3 f0f1 0011 2 0
5 f0f2 0101 2 1
6 f1f2 0110 2 2
9 f0f3 1001 2 3
10 f1f3 1010 2 4
12 f2f3 1100 2 5
7 f0f1f2 0111 3 0
11 f0f1f3 1011 3 1
13 f0f2f3 1101 3 2
14 f1f2f3 1110 3 3
15 f0f1f2f3 1111 4 0

20

7.3 Representing Euclidean Frames
A Euclidean frame F (F n

1 ,AF) has an diagonal IPM AF equal to the identity matrix with basis vectors satisfying:

fi · fi = 1

⇔ f2i = 1,

fi · fj = 0

⇔ fifj = fi ∧ fj
= −fj ∧ fi
= −fjfi ∀i 6= j

For such frame it is straight forward to compute the geometric product of any two basis blades GF (Fr, Fs) as it is
always a signed basis blade in the form GF (Fr, Fs) = FrFs = ±Fk and what remains is only to find the value of k
and the sign associated with the resulting basis blade Fk. The following is an example for the multiplication process
performed algebraically, then its equivalent using the ID representation for the geometric product of basis blades
F13F19 = (f0 ∧ f2 ∧ f3)(f0 ∧ f1 ∧ f4) = (f0f2f3)(f0f1f4) defined on a Euclidean frame of dimension 5. Algebraically
the result is initially set to be Fk = F13 = f0f2f3, then each basis vector in F19 is taken to perform the geometric
product with Fk using the associativity and anti-symmetry properties as follows:

Fk ← Fkf0

= (f0f2f3)f0

= (f0f2)(f3f0)

= −(f0f2)(f0f3)

= −(f0)(f2f0)(f3)

= (f0)(f0f2)(f3)

= (f0f0)(f2f3)

= (1)(f2f3)

= f2f3

Fk ← Fkf1

= (f2f3)f1

= (f2)(f3f1)

= −(f2)(f1f3)

= −(f2f1)(f3)

= (f1f2)(f3)

= f1f2f3

Fk ← Fkf4

= (f1f2f3)f4

= f1f2f3f4

= F30

Using the corresponding IDs:

IDF13
XORIDF19

= (01101)2XOR (10011)2

= (11110)2

= IDF30

21

This is not a coincidence because if the same basis vector fi is present or absent in both basis blades it will
always be absent in the final basis blade due to the property f2i = 1 thus the ID of the final basis blade can be
found directly by the bit-wise XOR operation of the IDs of the multiplied basis blades. The associated sign can be
computed using the algorithm implied by the following table where ID1 ← IDF13

, ID2 ← IDF19
. The final basis

blade will have the ID of IDFk
← ID1 and the sign as indicated in the last row.:

i j ID2 ID1 Condition Action Sign

1 0 - 1001
⇓
1 01101 Is bit i in ID2= 1? Yes Enter decreasing loop for j = 4 to i+ 1 +1

2 0 4 1001
⇓
1

↓
01101 Is bit j in ID1= 1? No Do nothing to sign, decrease j +1

3 0 3 1001
⇓
1 0

↓
1101 Is bit j in ID1= 1? Yes Change sign, decrease j −1

4 0 2 1001
⇓
1 01

↓
101 Is bit j in ID1= 1? Yes Change sign, decrease j +1

5 0 1 1001
⇓
1 011

↓
01 Is bit j in ID1= 1? No Do nothing to sign, exit loop on j +1

6 0 - 1001
⇓
1 0110

⇓
1 Is bit i in ID1= 1? Yes Set bit i in ID1 ← 0, increase i +1

7 1 - 100
⇓
11 01100 Is bit i in ID2= 1? Yes Enter decreasing loop for j = 4 to i+ 1 +1

8 1 4 100
⇓
11

↓
01100 Is bit j in ID1= 1? No Do nothing to sign, decrease j +1

9 1 3 100
⇓
11 0

↓
1100 Is bit j in ID1= 1? Yes Change sign, decrease j −1

10 1 2 100
⇓
11 01

↓
100 Is bit j in ID1= 1? Yes Change sign, exit loop on j +1

11 1 - 100
⇓
11 011

⇓
00 Is bit i in ID1= 1? No Set bit i in ID1 ← 1, increase i +1

12 2 - 10
⇓
011 01110 Is bit i in ID2= 1? No Do nothing, increase i +1

13 3 - 1
⇓
0011 01110 Is bit i in ID2= 1? No Do nothing, increase i +1

14 4 -
⇓
10011 01110 Is bit i in ID2= 1? Yes Do not enter decreasing loop since 4 < i+ 1 +1

15 4 -
⇓
10011

⇓
01110 Is bit i in ID1= 1? No Set bit i in ID1 ← 1, exit loop on i +1

16 - - - 11110 - Return Sign and ID1 +1
The implied algorithm goes as follows: assuming Fr = fr1fr2 · · · frp and Fs = fs1fs2 · · · fsq the geometric product

FrFs = ±Fk is required, which is itself a signed basis blade. The following algorithm is performed:

1. Initialize a sign variable Sign← +1 and ID variables ID1 ← IDFr
, ID2 ← IDFs

.

2. For increasing i = 0 to n− 1 do steps 3-6

3. If bit i in ID2= 1 do steps 4-6

4. For decreasing j = n− 1 to i+ 1 do step 5

5. If bit j in ID1= 1 Then Set Sign← −Sign

6. If bit i in ID1= 1 Then Set it to 0 Else Set it to 1

7. Return result in Sign and IDFk
← ID1

Using this algorithm, a Euclidean geometric product table can be finally constructed with 2n − 1 rows and 2n − 1
columns where each cell at location (i, j) (i.e. row i and column j) contains the sign SignE(Fi, Fj) and ID
IDFk

= IDFi
XORIDFj

of the basis blade resulting from the geometric product FiFj . Although this table is specific
to Euclidean metric of dimension n it is fundamental in the computations of all bilinear product computations for
any type of frame of the same dimension. An important property for SignE(Fi, Fj) when applied to the same basis
blade Fk = fk1 ∧ fk2 ∧ · · · ∧ fkg (i.e when i = j = k) can be deduced from the following:

22

F 2
k = FkFk

=
(
fk1 ∧ fk2 ∧ · · · ∧ fkg

) (
fk1 ∧ fk2 ∧ · · · ∧ fkg

)
= (−1)

g(g−1)/2 (
fk1 ∧ fk2 ∧ · · · ∧ fkg

) (
fkg ∧ fkg−1

∧ · · · ∧ fk1
)

= (−1)
g(g−1)/2 (

fk1fk2 · · · fkg
) (
fkgfkg−1

· · · fk1
)

= (−1)
g(g−1)/2

⇒ SignE(Fk, Fk) = (−1)
g(g−1)/2

, g = grade (Fk)

7.4 Representing Orthogonal Frames
An orthogonal frame F (F n

1 ,AF) has a diagonal IPM AF with basis vectors satisfying:

fi · fi = di

⇔ f2i = di,

fi · fj = 0

⇔ fifj = fi ∧ fj
= −fj ∧ fi
= −fjfi ∀i 6= j

Actually Euclidean frames and orthonormal frames are special cases of orthogonal frames. The only difference
between a Euclidean frame and an orthogonal frame is that the square of a basis vector can be any real number
di (including negative numbers and zero!). The same algorithm applied for a Euclidean frame can thus be used to
deduce a geometric product for such frame with a single change to step 5 to become: “If bit i in ID1= 1 Then Set it to
0 and Set Sign← di∗Sign Else Set it to 1”. There is another alternative, however, in this case by using the geometric
product for a Euclidean frame E (En

1 ,AE) with the same dimension having basis bladesEn = 〈E0, E1, · · · , E2n−1〉. If
ErEs = SignE(r, s)Ek then FrFs = SignE(r, s)λkFk where λk =

∏
(〈d0, d1, · · · , dn−1〉 , IDFk

) is the multiplication
of all di having a corresponding 1-bit in the bit pattern IDFk

= IDEk
. The scalar value λk is called the signature

of the basis blade Fk and is defined as the squared norm of Fk as can be seen from:

FkFk = F 2
k

= SignE(k, k)λkF0

= (−1)g(g−1)/2λk, g = grade (Ek) = grade (Fk)

⇒ λk = (−1)g(g−1)/2F 2
k

= FkF̃k

= ‖Fk‖2

This leads to a save in memory be simply storing n scalar values λk = ‖Fk‖2 , k ∈ {0, 1, · · · , 2n − 1} for the
orthogonal frame, then the geometric product lookup table is used for the corresponding Euclidean frame E to
compute FrFs as:

FrFs = λr,sFk,

IDFk
= IDFr

XORIDFs
,

λr,s = SignE(r, s) ‖Fk‖2

Initially, say, 14 tables for Euclidean frames of dimension 2 to 16 could thus be created and use them to compute
the geometric product of any orthogonal frame with any basis vectors signatures for the same dimensions.

7.5 Representing Derived Frames
Having a general frame E (En

1 ,AE) with basis vectors En
1 = 〈e1, e2, · · · , en〉, inner product matrix AE , and basis

blades En = 〈E0, E1, · · · , E2n−1〉 an invertible change-of-basis matrix C = [cij] can be applied to any vector x

23

represented on the basis En
1 by the column vector [x]En

1
=
(
x1 x2 · · · xn

)T to obtain its representation

[x]Fn
1

=
(
y1 y2 · · · yn

)T on a new basis for the same space F n
1 = 〈f1, f2, · · · , fn〉 (that shall be called

the derived basis). Let E =
(
e1 e2 · · · en

)T and F =
(
f1 f2 · · · fn

)Tbe column vectors containing
symbols for the basis vectors of En

1 and F n
1 such that F = CE⇔ fi =

∑n
j=1 cijej ∀i ∈ {1, 2, · · · , n}. Then:

x = [x]
T
En

1
E

= [x]
T
Fn

1
F

= [x]
T
Fn

1
CE

⇒ [x]
T
En

1
= [x]

T
Fn

1
C

⇒ [x]En
1

= CT [x]Fn
1

⇒ [x]Fn
1

= P [x]En
1
, P =

(
CT
)−1

Only in the case that C is orthogonal (i.e. C−1 = CT) then P = C. The elements of the inner product matrix
AF = [fi · fj] can be easily calculated as follows:

fi · fj =

(
n∑
r=1

cirer

)
·

(
n∑
s=1

cjses

)

=

n∑
s=1

n∑
r=1

circjs(er · es)

=

n∑
s=1

(
n∑
r=1

cir(er · es)

)
cTsj

⇒ AF = CAEC
T

Using F n
1 and AF what is called a derived frame F (F n

1 ,AF) can be constructed relative to the given base frame
E (En

1 ,AE) by means of the change-of-basis matrix C. In the case when AF is diagonal, the geometric product of
two multivectors represented in the derived frame can be computed using the method in the last subsection.

When AF is not diagonal but the base frame E is orthogonal and the transformation matrix is also orthogonal
C−1 = CT ⇔ P =

(
CT
)−1

= C, the geometric product on the derived basis F n can be computed by extending
CT and C as orthogonal outermorphisms C

T
and C to be applied to multivectors for transforming back and forth

between the base frame and the derived frame. Thus the geometric product of two multivectors X,Y can be
computed as:

XY = C
[
C
T

[X]C
T

[Y]
]
, C

T
= C

−1

When AF is not diagonal and one or both of the orthogonality conditions on the base frame E and change-of-
basis matrix C do not hold, another method for computing the geometric product is needed, which is explained in
the following subsection.

7.6 Representing Non-Orthogonal Frames
For a non-orthogonal frame F (F n

1 ,AF) the geometric product of any two basis blades is not guaranteed to be a
term (i.e. a weighted basis blade) but is generally a multivector (i.e. the sum of terms of different basis blades).
Each cell in the geometric product table will then be a full multivector that may contain up to 2n terms. This
is a lot to store in memory for a single frame (23n terms many of which might be zeros). Another alternative is
to use a diagonalization technique on the IPM AF to express the non-orthogonal frame as a derived frame for a
base orthogonal frame E (En

1 ,AE) with basis vectors En
1 = 〈e1, e2, · · · , en〉. This is done by finding the IPM AE of

the base orthogonal frame and the change-of-basis matrix C = [cij] that expresses the basis vectors of the derived
non-orthogonal frame fi as a linear combinations of the orthogonal basis vectors fi =

∑n
j=1 cijej ∀i ∈ {1, 2, · · · , n}

as stated in the previous sub-section.

24

Noting that the IPM AF is a symmetric square matrix, it is easy to find the real eigen values λi and LID eigen
vectors Vi of AF that satisfy AFVi = λiVi, i ∈ {0, 1, · · · , n}. Now if an orthonormalization technique is used on the
vectors Vi (for example the Gram-Schmidt or Householder techniques) to obtain the orthonormal eigen vectors Ci
and create the orthogonal square matrix C =

[
C1 C2 · · · Cn

]
as a concatenation of the column vectors Ci,

then the expression AE = CTAFC is actually a diagonal matrix containing the eigen values on its diagonal thus
it can be considered the IPM of a base orthogonal frame to this derived frame as described in the previous section.
Now it is simple to extend CT and C as orthogonal outermorphisms C

T
and C to be applied to multivectors for

transforming back and forth between the base orthogonal frame E and the non-orthogonal derived frame F . Thus
the geometric product of two multivectors X,Y can be computed as:

XY = C
[
C
T

[X]C
T

[Y]
]
, C

T
= C

−1

This means that for a non-orthogonal frame it is necessary to construct and store the outermorphisms C
T
and

C to use them for performing the geometric product and other bilinear products as will be explained later..

7.7 Representing Reciprocal Frames
Having a general base frame E (En

1 ,AE)with basis vectors En
1 = 〈e1, e2, · · · , en〉, inner product matrix AE , and

basis blades En = 〈E0, E1, · · · , E2n−1〉, it is possible to create a special type of derived frame called the reciprocal
frame F (F n

1 ,AF) having basis vectors F n
1 = 〈f1, f2, · · · , fn〉 using the relation:

fi = (−1)i−1 (e1 ∧ e2 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ en)cI−1 (10)
I = e1 ∧ e2 ∧ · · · ∧ en,

I−1 =
(−1)n(n−1)/2

I ∗ Ĩ
I

⇒ fi · ei = 1 ∀i ∈ {1, 2, · · · , n},
fi · ej = 0 ∀i, j ∈ {1, 2, · · · , n}, i 6= j

If the base frame E is orthogonal the derived reciprocal frame F is also orthogonal and the above relation reduces
to the simple form:

fi =
1

ei · ei
ei ∀i ∈ {0, 1, · · · , n− 1}

⇔ AF = A−1E

For a non-orthogonal base frame E the reciprocal frame F is also non-orthogonal, thus equation (10) can be
used to compute each fi as a linear combination of En

1 . Then the change of basis matrix C can be easily derived,
and the process is continued as usual with the non-orthogonal derived frame F by finding another orthogonal base
frame and orthogonal outermorphism as described in the previous subsection.

7.8 Performing bilinear Products
This subsection describes how to implement the following bilinear products of geometric algebra on multivectors
X,Y within a frame of any type:

• The outer product X ∧ Y

• The scalar product X ∗ Y

• The left contraction product XcY

• The right contraction product XbY

• The fat-dot product X • Y

• The Hestenes dot product X •H Y

25

• The commutator product X ⊗ Y

• The anti-commutator product X � Y

Starting with orthogonal frames, any bilinear product ? of two multivectors X,Y ∈
∧n performed on their

representations [X]Fn = [xi]n×1 , [Y]Fn = [yi]n×1 in an orthogonal frame F (F n
1 ,AF) with basis blades F n =

〈F0, F1, · · · , F2n−1〉 can be implemented as:

X ? Y =

2n−1∑
r=0

2n−1∑
s=0

xrys (Fr ? Fs)

Now the goal is to find the value of Fr ?Fs for all r, s ∈ {0, 1, · · · , 2n−1}. Due to the properties of the geometric
product on orthogonal frames and the definitions of the bilinear products, the bilinear product of any two basis
blades Fr ?Fs is either a zero or a single term λ?r,sFk but never more than a single term. Actually when the value of
Fr?Fs = λ?r,sFk 6= 0 the term is equal to the geometric product of the two basis blades λ?r,sFk = GF (Fr, Fs) = FrFs.
The task is now to answer the following for each Fr ? Fs:

1. Based on the general definition of the bilinear product alone (i.e. with no regard for the actual metric), when
is Fr ? Fs guaranteed to equal zero?

2. If Fr ? Fs is not guaranteed to equal zero (by the general definition of the bilinear product alone), what is the
value of the geometric product GF (Fr, Fs) = FrFs?

The second question is already answered in the previous sections for orthogonal frames. What remains is the answer
to the first question.

Starting with the outer product that is metric independent, a Euclidean metric with the same dimension can
be assumed with no loss of generality. Noting that in a Euclidean frame the outer product of two basis blades
with no basis vectors in common is completely equivalent to the geometric product of the two basis blades. Thus
the outer product of two basis blades is itself a signed basis blade with a grade equal to the sum of their grades
Fr ∧Fs = λ∧r,sFk, λ

∧
r,s = ±1, grade(Fk) = grade(Fr) + grade(Fs). In addition the outer product of two basis blades

with any common basis vector is always zero: IDFr
AND IDFs

6= 0 ⇒ Fr ∧ Fs = 0. Other than that the process
of performing the outer product in any metric (orthogonal or not) is identical to the process of performing the
geometric product on a Euclidean frame of the same dimension. Thus the outer product of basis blades Fr ∧ Fs
can be formulated using the geometric product of the two corresponding basis blades of the Euclidean frame with
same dimension E (En

1 , In) as follows:

Fr ∧ Fs =

{
0 IDFr

AND IDFs
6= 0

GE (Er, Es) otherwise

Next comes the scalar product that has the property Fr ∗ Fs = 〈FrFs〉0 = 〈λr,sFk〉0 = λr,s 〈Fk〉0 where IDFk
=

IDFr XORIDFs and λr,s = SignE(r, s) ‖Fk‖2. Since the only basis blade with grade zero is F0 (i.e. Fr ∗ Fs =
λr,s ⇔ IDFr

XORIDFs
= IDF0

= 0), the scalar product of two basis blades can be computed using the following
relation:

Fr ∗ Fs =

{
0 IDFr XORIDFs 6= 0

FrFs otherwise

For the left contraction FrcFs = 〈FrFs〉b−a = 〈λr,sFk〉b−a = λr,s 〈Fk〉b−a , a = grade(Fr), b = grade(Fs). Using
an argument similar to the scalar product if there is a basis blade in Fr that is not present in Fs the number of ones
in the pattern IDFk

= IDFr
XORIDFs

will be more than grade(Fs)−grade(Fr) leading to a zero left contraction.
Thus the left contraction product of two basis blades can be computed using the following relation:

FrcFs =

{
0 IDFr

ANDNOT IDFs
6= 0

FrFs otherwise

The same for the right contraction FrbFs = 〈FrFs〉a−b = 〈λr,sFk〉a−b = λr,s 〈Fk〉a−b , a = grade(Fr), b =
grade(Fs) that can be computed using the relation:

26

FrbFs =

{
0 IDFs ANDNOT IDFr 6= 0

FrFs otherwise

The fat-dot product of two basis blades has the property Fr • Fs = FrcFs + FrbFs − Fr ∗ Fs which leads to one
of three cases:

1. a = b⇒ Fr • Fs = Fr ∗ Fs + Fr ∗ Fs − Fr ∗ Fs = Fr ∗ Fs

2. a < b⇒ Fr • Fs = FrcFs

3. a > b⇒ Fr • Fs = FrbFs
This leads to the computation relation:

Fr • Fs =

0 a = b, (IDFr

XORIDFs
) 6= 0

0 a < b, (IDFr
ANDNOT IDFs

) 6= 0

0 a > b, (IDFs
ANDNOT IDFr

) 6= 0

FrFs otherwise

The Hestenes inner product Fr •H Fs is equal to the fat-dot product unless one of the multivectors is a scalar
in which case the result is zero. This leads to the computation relation:

Fr •H Fs =

0 ab > 0, a = b, (IDFr
XORIDFs

) 6= 0

0 ab > 0, a < b, (IDFr
ANDNOT IDFs

) 6= 0

0 ab > 0, a > b, (IDFs
ANDNOT IDFr

) 6= 0

0 ab = 0

FrFs otherwise

The commutator product of basis blades satisfies Fr ⊗ Fs = 1
2 (FrFs − FsFr) = 1

2 (λr,s − λs,r)Fk thus the
computation relation can be deduced using the sign of the geometric product of the two corresponding basis blades
of the Euclidean frame with same dimension as follows::

Fr ⊗ Fs =

{
0 SignE(Er, Es) = SignE(Es, Er)

FrFs otherwise

The anti-commutator product of basis blades similarly satisfies Fr � Fs = 1
2 (FrFs + FsFr) = 1

2 (λr,s + λs,r)Fk
thus:

Fr � Fs =

{
0 SignE(Er, Es) = −SignE(Es, Er)
FrFs otherwise

For a non-orthogonal frame F a bilinear product of two basis blades is not guaranteed to produce a weighted
basis blade (except for the outer product) thus all the above computational relations become invalid. The alternative
computation method comes from the fact that for any bilinear product ? if an orthogonal outermorphism T

T
= T

−1

is used, the transform of the product of two multivectors X,Y equals the product of the transformed multivectors:

T [X ? Y] = T [X] ?T [Y] , T
T

= T
−1

⇔ X ? Y = T
T [

T [X] ?T [Y]
]

Thus it is possible to use the outer morphism T = C
T

between the non-orthogonal frame F and its base
orthogonal frame E to perform the bilinear product just as with the geometric product before:

X ? Y = C
[
C
T

[X] ?C
T

[Y]
]

27

8 Linear Transforms of Multivectors

8.1 Components of a Linear Transform on Multivectors
The fact that a geometric algebra is itself a linear space on 2n basis blades enables the use of matrices as general
linear transformations on multivectors where the input multivector is expressed as a column vector containing the
2n coefficients of the basis blades of the selected domain frame. A linear transform T :

∧n → ∧m on multivectors
can thus be defined using the following three components:

1. The n-dimensional GA frame of the domain of the transform E (En
1 ,AE).

2. The m-dimensional GA frame of the co-domain of the transform F (Fm
1 ,AF).

3. The 2m×2n real transformation matrixMT that can be used to apply the transform using matrix multiplicationY =
T [X]⇔ [Y]Fm = MT [X]En .

All linear operations in geometric algebra can be expressed as general linear transformations on multivector. The
real problem with this representation is the large storage space required for the of MT. Fortunately many such
operations result in a very sparse MT thus may be implemented using sparse arrays of various forms. In addition
many important linear transforms are actually outermorphisms (i.e. they preserve the grade of transformed blades).
The linear transform matrix of an outermorphism can be represented as a set of smaller block matrices as will be
described in the following section. The use of a matrix to represent the linear transform is an easy method to
implement many computations on linear transformations:

• The identity transform can be represented by the identity matrix I.

• The adjoint transform TT can be represented by matrix transpose (MT)T .

• The inverse transform T−1 can be represented by matrix inverse (MT)−1.

• The addition of two transforms T1 + T2 can be represented by addition of matrices MT1
+ MT2

.

• The scaling of a linear transform αT can be represented by matrix multiplication with scalar αMT .

• The composition of two transforms T1 ◦T2 can be represented by matrix multiplication MT1
MT2

.

• and so forth...

8.2 Representing Outermorphisms
An outer morphism f :

∧n → ∧m is an extension of a linear transformation of vectors (represented by a matrix
Mf =

[
m0 m1 · · · mn−1

]
m×n containing the column vectors m1,m2, · · · ,mn) to transform whole blades

and is naturally linear and grade preserving:

f :

n∧
→

m∧
f [α] = α, ∀α ∈

n∧
0

f [A+B] = f [A] + f [B], ∀A,B ∈
n∧

f [X ∧ Y] = f [X] ∧ f [Y], ∀X,Y ∈ Bn

This means that when applying an outermorphism to a multivector A the transformation can be decomposed
as follows:

f [A] = f [〈A〉0 + 〈A〉1 + · · ·+ 〈A〉n]

= f [〈A〉0] + f [〈A〉1] + · · ·+ f [〈A〉n]

= f0 [〈A〉0] + f1 [〈A〉1] + · · ·+ fn [〈A〉n]

28

Each fi :
∧n
i →

∧m
i is a linear transform on the subspace of k-vectors of grade i having an associated trans-

formation matrix Mi =
[
mi

0 mi
1 · · · mi

ri

]
, ri =

(
n
i

)
that can be directly constructed from Mf . Let

En = 〈E0, E1, · · · , E2n−1〉 be the basis blades of the domain of f , F =
(
f1 f2 · · · fn

)T be the column vector
containing the basis vector symbols of the co-domain, and let vi = mT

i F⇔ [vi]Fm
1

= mi and define the ordered set
of vectors V = 〈v0, v1, · · · , vn−1〉. Then the columns of the matrices Mi can be defined as follows:

m0
0 = [1]1×1

m1
j = mj

mi
j =

[∏
∧

(V, IDn
i (j))

]
Fm

i

The last relation deserves some explanation. First noting that the matrix M0 is used to transform the scalar
part of a multivector. Because of the definition of the outermorphism: f [〈A〉0] = 〈A〉0 this matrix must be a 1× 1
matrix containing a single scalar equal to 1. Next the matrix M1 is used to transform vectors which is the same
use of the matrix Mf . Continuing with higher grades, column j of the k-vector transformation matrix Mi, i > 1
can be obtained by the following steps:

1. Find the ID k = IDn
i (j) of the basis blade Ek whose grade is i and index is j: IDn

i (j) = IDEk
, grade(Ek) =

i, index(Ek) = j.

2. Use the ID you found to apply the outer product to a subset of vectors in V : Xk = vk1 ∧ vk2 ∧ · · · ∧ vkr where

r =

(
n
i

)
, k = 2k1 + 2k2 + · · ·+ 2kr , k1 < k2 < · · · < kr

3. Find the representation of Xk with respect to the grade i basis k-vectors Fm
i : [Xk]Fm

i
.

If the outer product is applied (as described shortly) using the representation matrices mi directly, finding the
k-vectors vi or their representation with respect to the k-vector basis Fm

i is not needed. In addition, mi
j , i >

1 can be computed using the outer product of the two blades represented by mi−1
r and m1

s where IDn
i (j) =

IDn
i−1(r)ORIDn

i−1(s), IDn
i−1(r)AND IDn

1 (s) = 0 (i.e. the bit pattern associated with the basis blade represented
by mi

j is decomposed to two lower-grade bit patterns with no common basis vectors). Thus the columns can
be constructed gradually starting from the columns of the original transformation matrix Mf . In addition the

determinant of the base linear operator on vectors det (f) = |Mf | is defined as det (f) =
f [I]

I
where I = f0 ∧ f1 ∧

· · · ∧ fn−1 is the pseudo-scalar of the co-domain frame F (F n
1 ,AF) for outermorphisms on spaces with the same

domain and co-domain. This is simply the value of the single element in the 1× 1 matrix mn
n.

Using this method of constructing outermorphisms, many operations ḡ = P
{
f
}
on outermorphisms that produce

outermorphisms can be done using one of two methods:

1. The operation is performed on the base matrix Mf (i.e. the base linear transform on vectors) to obtain a new
matrix Sg = P {Mf} that represents a linear transform of vectors g then extend g as an outermorphism g.

2. The operation is performed on every k-vector transformation matrix Mi to obtain a new set of matrices
Si = P {Mi} that construct the new outermorphism.

The following operations can be implemented using any of the two methods:

• The adjoint of an outermorphism.

• The inverse on an outermorphism.

• The composition of two outermorphisms.

The following operations can only be implemented by the first method:

• The scaling of an outermorphism (equivalent to multiplication of the vector transform matrix by a scalar).

• The addition of two outermorphisms.

29

The reason for the last two exceptions that if an outermorphism is treated as an ordinary linear transform on
multivectors the traditional addition of two matrices S = [sij] ,T = [tij] representing the linear transform matrices
of the two outermorphisms will never itself be an outermorphism because s11 + t11 = 1 + 1 = 2 thus leading
to a linear transform on multivectors that changes the scale of scalars which is definitely not an outermorphism.
The same argument holds when multiplying an outermorphism by a real scalar α, , in which case the k-vector
matrix Mi must be multiplied by αi to obtain the correct result; rather than multiplication by α. This means
that there is a structural distinction between performing operations on a general linear transform of multivectors
and performing the same operations on outermorphisms to obtain other outermorphisms due to the extra algebraic
structure provided by the concept of an outermorphism as an extension for linear transformations on vectors so
care must be taken when applying such operations about what is actually meant.

Finally, all GA operations defined using bilinear GA products and outermorphisms can be automatically con-
verted to simpler, but much involved, computations on frames; including linear projections, meet and join of blades,
versor products, and reflections and rotations of blades.

References
[1] L. Dorst, D. Fontijne, and S. Mann, Geometric Algebra for Computer Science: An Object-Oriented Approach

to Geometry, ser. The Morgan Kaufmann Series in Computer Graphics. Elsevier Science, 2010. [Online].
Available: https://books.google.com.eg/books?id=Sg_uR57ZktoC

[2] K. Kanatani, Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and
Graphics. CRC Press, 2015. [Online]. Available: https://books.google.com.eg/books?id=LZS9BwAAQBAJ

[3] S. Axler, Linear Algebra Done Right, ser. Undergraduate Texts in Mathematics. Springer International
Publishing, 2014. [Online]. Available: https://books.google.com.eg/books?id=5qYxBQAAQBAJ

[4] D. Poole, Linear Algebra: A Modern Introduction. Cengage Learning, 2014. [Online]. Available:
https://books.google.com.eg/books?id=V-UbCgAAQBAJ

[5] M. D. Zaharia and L. Dorst, “The interface specification and implementation internals of a program module for
geometric algebra,” JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING, Tech. Rep., 2002.

[6] D. Fontijne, Efficient Implementation of Geometric Algebra. Universiteit van Amsterdam [Host], 2007.
[Online]. Available: https://books.google.com.eg/books?id=oAzdMgEACAAJ

30

